

### Vision Zero

 Based on an underlying ethical principle that "it can never be ethically acceptable that people are killed or seriously injured when moving within the road transport system."





### **Presentation Outline**

- Transportation Concepts
  - Vision Zero
  - Transportation Demand Management
  - Complete Streets
  - Level of Service
  - Vehicle Miles Traveled
- Scotts Valley Mobility
- Key Issues & Discussion



### Vision Zero





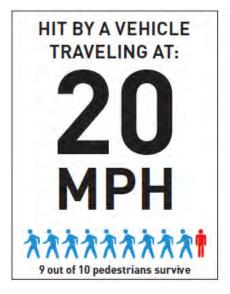


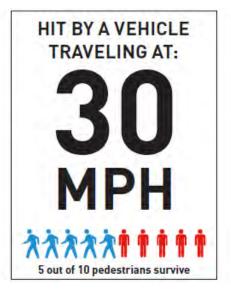











### Vision Zero

#### Possible Maximum Travel Speeds

| Type of infrastructure and traffic                                                                 | Possible travel speed (km/h) |
|----------------------------------------------------------------------------------------------------|------------------------------|
| Locations with possible conflicts between pedestrians and cars                                     | 30 km/h (19 mph)             |
| Intersections with possible side impacts between cars                                              | 50 km/h (31 mph)             |
| Roads with possible frontal impacts between cars, including rural roads <sup>[6]</sup>             | 70 km/h (43 mph)             |
| Roads with no possibility of a side impact or frontal impact (only impact with the infrastructure) | 100 km/h (62 mph)+           |









### Federal Complete Streets Act of 2009


A roadway that accommodates all travelers, particularly public transit users, bicyclists, pedestrians, and motorists, to enable all travelers to use the roadway safely and efficiently.

### AB 1358 – California Complete Streets Act

Requires all CA cities and counties to consider complete streets when next updating their General Plan.



## **Transportation Demand Management**







#### ACTIVE SIDEWALKS

Sidewalks should be smooth, wide, feel safe, and have appropriate transitions to the street, making them easy to walk or use a wheelchair on

#### DEDICATED BIKE LANES

Simple pavement markings creating a dedicated bike lane make both metorist and bicycle movement more predictable, and therefore safer for both. They may increase the likelihood of casual riders using bicycles for transportation

#### ACTIVE ROADWAY

One lane of car traffic going in each direction with a two-way-left-turn-lane (TWLTL) in the center would reduce the amount of car crashes on Government Street by providing turning vehicles a refuge from through traffic, while keeping through traffic moving more efficiently

#### SAFE CROSSWALKS

Clearly marked crosswalks allow pedestrians and wheelchair users to cross streets safely, while making sure cars know where to expect them

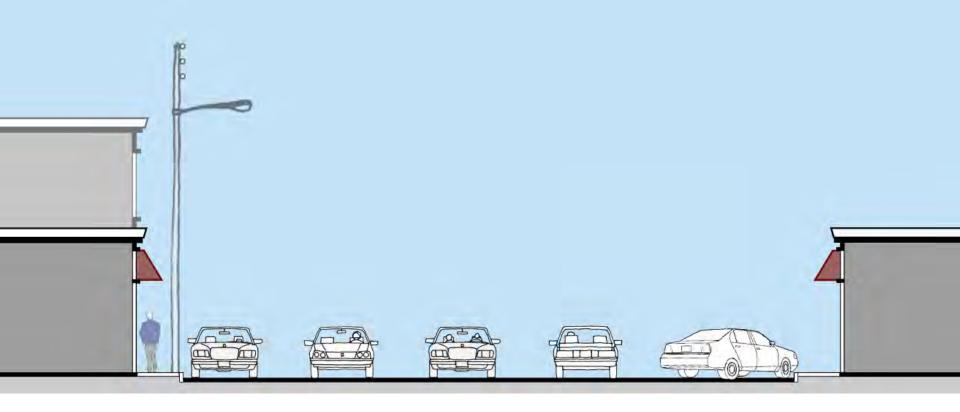
#### PLANTING STRIP

Street trees and landscaping slow speeding traffic, improve the aesthetics of the roadway, provide shade, and create a buffer between cars and people, making a more inviting environment for pedestrians

#### GREEN SPACES

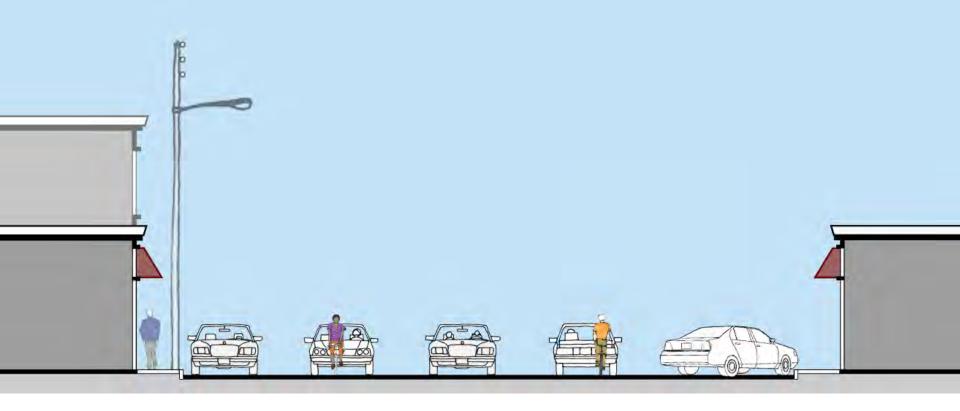
Parks and public green spaces create a destination, encouraging community interaction and providing a rest from the surrounding urban environment





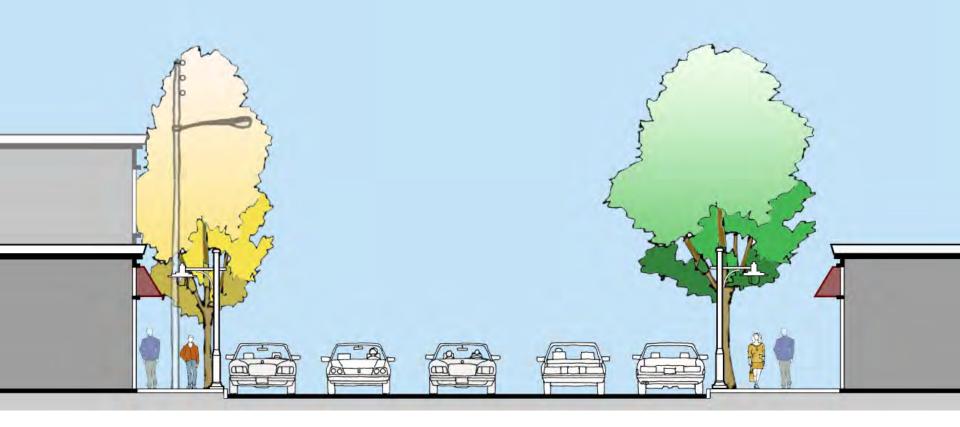





### **Davis - Typical East Section - Existing**






### **Davis - Typical East Section - Short Term Future**





### **Davis - Typical East Section - 60' ROW - Future**





### Level of Service

#### **FREE FLOW**

Low volumes and no delays.

### LOS



#### STABLE FLOW

Speeds restricted by travel conditions, minor delays.

### LOS

#### STABLE FLOW

Speeds and maneuverability closely controlled because of higher volumes.

#### LOS



#### STABLE FLOW

Speeds considerably affected by change in operation conditions. High density traffic restricts maneuverability; volume near capacity.

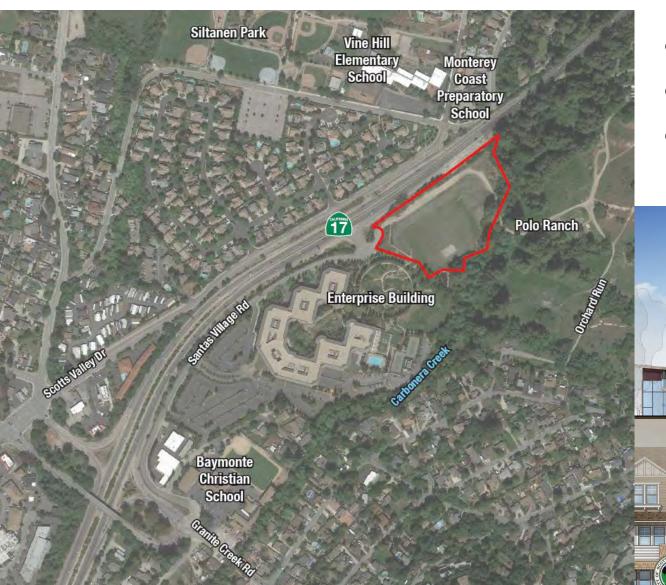
#### LOS



#### **UNSTABLE FLOW**

Low speeds; considerable delay; volume at or slightly over capacity.

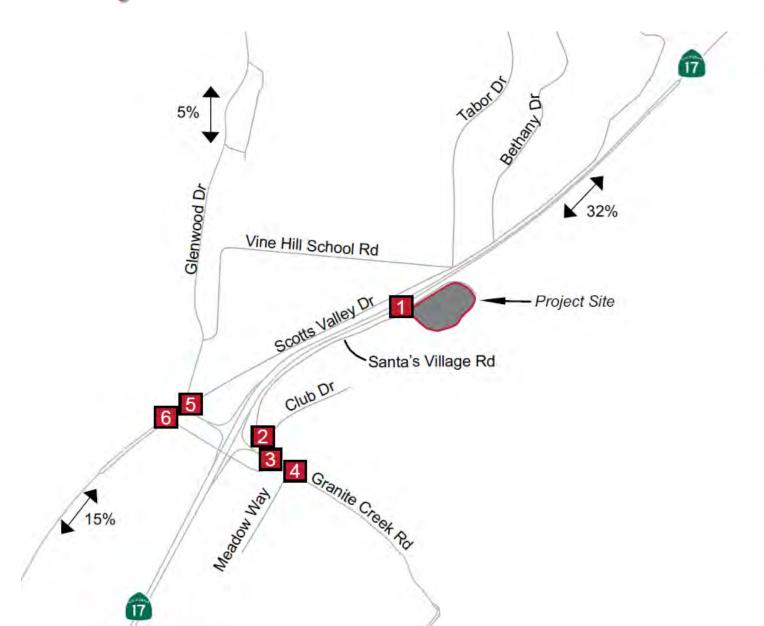
#### LOS


#### **FORCED FLOW**

Very low speeds; volumes exceed capacity; long delays with stop-and-go traffic.






# **Transportation Impact Analysis**



- 120-room hotel
- 50 townhomes
- 9-acres



# Study Intersections & Distribution





# **Trip Generation**

Table 15-3: Proposed Project Weekday Trip Generation

|                                    | ITE Land    | Size                   | Da   | ily   |      | ak Hou | r   | PM Peak Hour |      |    |     |       |
|------------------------------------|-------------|------------------------|------|-------|------|--------|-----|--------------|------|----|-----|-------|
| Land Use                           | Use<br>Code |                        | Rate | Trips | Rate | ln     | Out | Total        | Rate | In | Out | Total |
| Residential Townhouse <sup>1</sup> | 230¹        | 50 DU                  | 7.04 | 352   | 0.60 | 5      | 25  | 30           | 0.68 | 23 | 11  | 34    |
| Hotel <sup>2</sup>                 | 3102        | 121 Rooms <sup>3</sup> | 8.17 | 989   | 0.53 | 38     | 26  | 64           | 0.60 | 37 | 36  | 73    |
| Net New Project Trips              |             |                        |      | 1341  |      | 43     | 51  | 94           |      | 60 | 47  | 107   |

#### Notes:

- 1. ITE Code 230; Based on ITE equation.
- 2. ITE Code 310; Based on average rate.
- 3. The hotel plans envision 120 hotel rooms. To provide a conservative estimate of trip generation, 121 rooms are included in the analysis.

Source: Kimley-Horn & Associates, 2015



# Impact Analysis – Existing + Project

Table 15-4; Existing and Existing + Project Transportation Delay & LOS

|   | Intersection                                                   |                 |          | LOS<br>Threshold |              |                | Exis | ting         | Existing + Project |     |              |                |     |              |                |     |
|---|----------------------------------------------------------------|-----------------|----------|------------------|--------------|----------------|------|--------------|--------------------|-----|--------------|----------------|-----|--------------|----------------|-----|
|   |                                                                |                 | Agency   |                  | AM Peak Hour |                |      | PM Peak Hour |                    |     | AM Peak Hour |                |     | PM Peak Hour |                |     |
|   |                                                                | Control<br>Type |          |                  | Movement     | Delay<br>(sec) | LOS  | Movement     | Delay<br>(sec)     | LOS | Movement     | Delay<br>(sec) | LOS | Movement     | Delay<br>(sec) | LOS |
|   | Santa's Village Road / CA 17 Hwy Ramps                         | 0000            | 0.11     | om               | ( AT)        | 0.0            | Α    |              | 0.0                | Α   | 1.454        | 0.0            | Α   | 1.8.1        | 0.0            | Α   |
| 1 | Worst Approach                                                 | SSSC            | Caltrans | C/D              | NB/SB        | 0.0            | Α    | NB/SB        | 0.0                | A   | NB/SB        | 0.0            | A   | NB/SB        | 0.0            | Α   |
| 2 | Santa's Village Road / Club Drive                              | 0000            | City     | C/D              | - 5-         | 0.9            | Α    | -1           | 4.6                | Α   | 1 - 2 - 1    | 0.8            | Α   | 10           | 3.9            | Α   |
|   | Worst Approach                                                 | SSSC            |          |                  | SB           | 9.8            | Α    | SB           | 9.6                | A   | SB           | 9.7            | A   | SB           | 9.8            | Α   |
| 3 | Santa's Village Road / Granite Creek Road / Hwy 17<br>NB Ramps | Signal          | Caltrans | C/D              | -            | 58.1           | E    | Tr.          | 46.4               | D   | Y            | 58.3           | E   | ×            | 46.8           | D   |
|   | Granite Creek Road / Meadow Way                                | 0000            | 0.1      | 0.0              |              | 1.6            | Α    |              | 1.3                | Α   |              | 1.6            | Α   |              | 1.3            | Α   |
| 4 | Worst Approach                                                 | SSSC            | City     | C/D              | EB           | 15.1           | C    | EB           | 13.4               | В   | EB           | 15.1           | C   | EB           | 13.4           | В   |
| 5 | Scotts Valley Drive / Glenwood Drive / Hwy 17 SB<br>Ramps      | Signal          | Caltrans | C/D              | - 7          | 39,4           | D    |              | 39.3               | D   |              | 39.8           | D   | +            | 39.5           | D   |
| 6 | Scotts Valley Drive / Granite Creek Road                       | Signal          | Caltrans | C/D              |              | 34.5           | С    | 1-4-         | 29.8               | C   | 1-4-         | 34.9           | C   | -0-          | 31.4           | C   |

#### Notes:

- 1. NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound
- 2. Analysis performed using 2010 Highway Capacity Manual methodologies.
- Each study intersection is controlled by a traffic signal, a side-street stop-controlled (SSSC), or an all-way stop-controlled (AWSC).
- 4. Delay refers to the average control delay for the entire intersection measured in seconds per vehicle. According to HCM methodology, overall LOS is not defined for side street stop controlled intersections, instead the worst approach control delay is used in seconds.
- If a specific movement has a delay less than the approach or intersection average, and the trips are increased for this movement, the overall intersection delay is decreased.
- 6. Intersections that are operating below acceptable levels are shown in BOLD and shaded light blue.

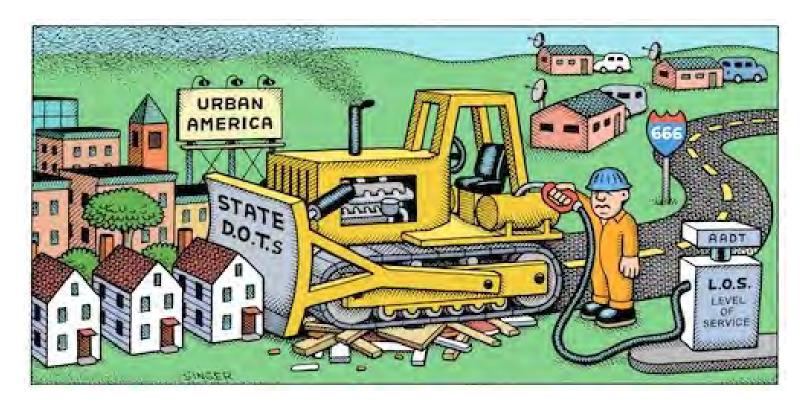
Source: Kimley-Hom & Associates, Inc. 2015



# Impact Analysis – Cumulative + Project

Table 15-5: Cumulative and Cumulative + Project Transportation Delay & LOS

| П |                                                                |              |          | Cumulative       |              |                |     |                      |                |     |              | Cumulative + Project |     |              |                |     |      |     |   |
|---|----------------------------------------------------------------|--------------|----------|------------------|--------------|----------------|-----|----------------------|----------------|-----|--------------|----------------------|-----|--------------|----------------|-----|------|-----|---|
|   | Intersection                                                   | Control Type |          | LOS<br>Threshold | AM Peak Hour |                |     | PM Peak Hour         |                |     | AM Peak Hour |                      |     | PM Peak Hour |                |     |      |     |   |
|   |                                                                |              | Agency   |                  | Movement     | Delay<br>(sec) | LOS | Movement             | Delay<br>(sec) | LOS | Movement     | Delay<br>(sec)       | LOS | Movement     | Delay<br>(sec) | LOS |      |     |   |
| 1 | Santa's Village Road / CA 17 Hwy Ramps                         | SSSC         | 0.11     | C/D              | 1.5          | 0.0            | A   | 1.6.4                | 0.0            | Α   | 8            | 0.0                  | Α   | T.A.         | 0.0            | Α   |      |     |   |
|   | Worst Approach                                                 |              | Caltrans |                  | NB/SB        | 0.0            | Α   | NB/SB                | 0.0            | Α   | NB/SB        | 0.0                  | Α   | NB/SB        | 0.0            | A   |      |     |   |
| 2 | Santa's Village Road / Club Drive                              | SSSC         | 2000     | 0000             | 2000         | 07             | O/D | 1-15-                | 1.0            | A   | - 75         | 3.6                  | Α   | . 8          | 1.0            | Α   | 1.05 | 3.4 | Α |
|   | Worst Approach                                                 |              | City     | C/D              | SB           | 10.2           | В   | SB                   | 10             | В   | SB           | 10.3                 | В   | SB           | 10.7           | В   |      |     |   |
| 3 | Santa's Village Road / Granite Creek Road /<br>Hwy 17 NB Ramps | Signal       | Caltrans | C/D              |              | 59.8           | E   | 0                    | 49.1           | D   | 0            | 60.1                 | E   |              | 49.9           | D   |      |     |   |
| 5 | Granite Creek Road / Meadow Way                                | SSSC         | 0.4      | C/D              |              | 1.8            | A   | F-8-1                | 1.3            | Α   |              | 1.8                  | Α   | -4-          | 1.3            | A   |      |     |   |
| 4 | Worst Approach                                                 |              | City     |                  | EB           | 16.3           | C   | EB                   | 15.5           | C   | EB           | 16.3                 | C   | EB           | 15.5           | C   |      |     |   |
| 5 | Scotts Valley Drive / Glenwood Drive / Hwy<br>17 SB Ramps      | Signal       | Caltrans | C/D              |              | 43.2           | D   | <b>1</b> 0, <b>1</b> | 42.9           | D   | 151          | 43.7                 | D   | -84          | 43.1           | D   |      |     |   |
| 6 | Scotts Valley Drive / Granite Creek Road                       | Signal       | Caltrans | C/D              | Y            | 39.9           | D   | Tree-                | 29.7           | C   | - 0 -        | 40.1                 | D   | -4-          | 30.9           | C   |      |     |   |


#### Notes:

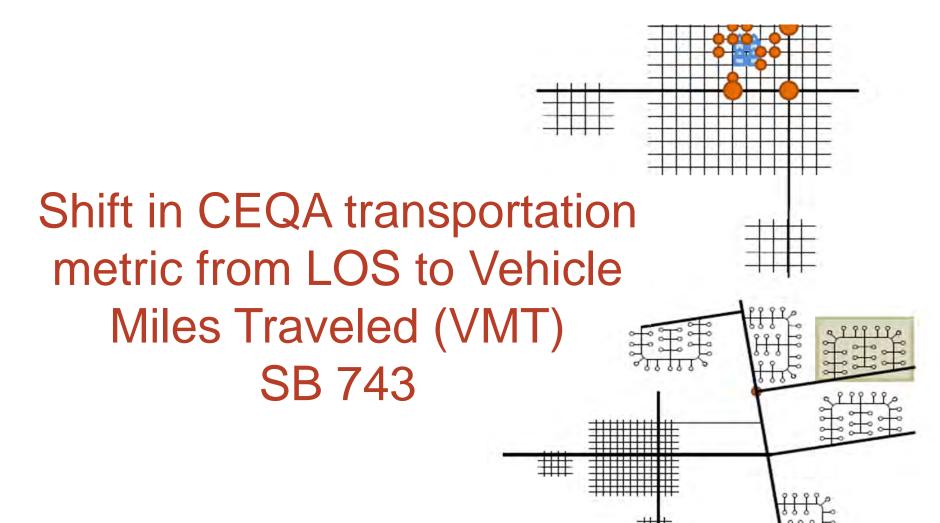
- 1. NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound
- 2. Analysis performed using 2010 Highway Capacity Manual methodologies.
- Each study intersection is controlled by a traffic signal, a side-street stop-controlled (SSSC), or an all-way stop-controlled (AWSC).
- 4. Delay refers to the average control delay for the entire intersection measured in seconds per vehicle. According to HCM methodology, overall LOS is not defined for side street stop controlled intersections, instead the worst approach control delay is used in seconds.
- 5. If a specific movement has a delay less than the approach or intersection average, and the trips are increased for this movement, the overall intersection delay is decreased.
- 6. Intersections that are operating below acceptable levels are shown in BOLD and shaded light blue.

Source: Kimley-Horn & Associates, Inc. 2015



### Level of Service




"Level of Service" is the metric that, perhaps more than any other, fuels the decimation of walkable streets.



### Level of Service - Limitations

- Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion but exacerbates regional congestion
- 3. Inhibits transit and active transportation
- Measures mobility, not access; shows failure when we succeed
- Measures mobility poorly; fails to optimize network even for autos
- Forces more road construction that is expensive to maintain
- 7. Hard to calculate and is inaccurate







## SB 743 – Legislative Intent

More appropriately balances the needs of congestion management with statewide goals related to:

- Infill development
- □ Promotion of public health through active transportation
- □ Reduction of greenhouse gas emissions



## SB 743 Background

 Replaces LOS with Vehicle Miles of Travel (VMT) in CEQA Analysis (July 2020)

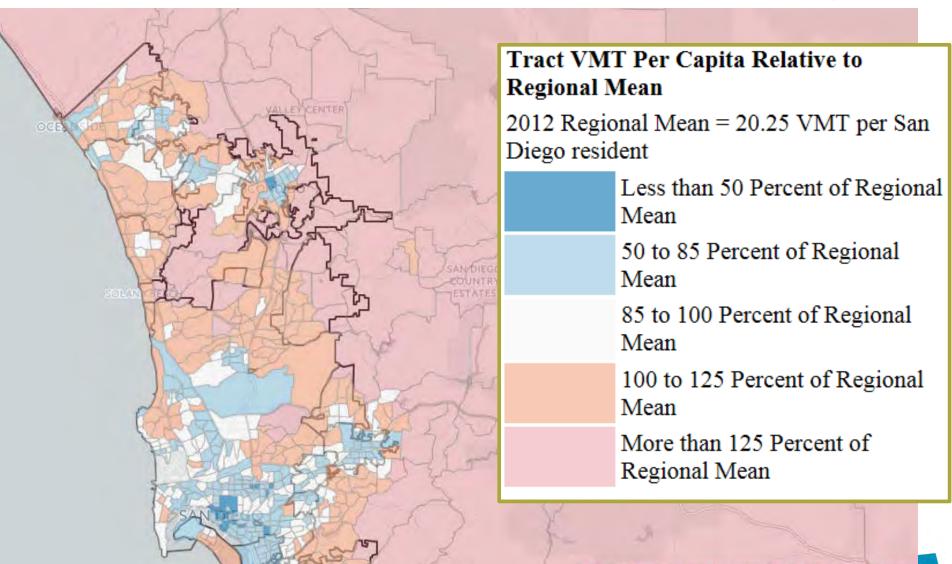
 LOS is not required for a CEQA document but can still be used for planning purposes



### Vehicle Miles Traveled (VMT)

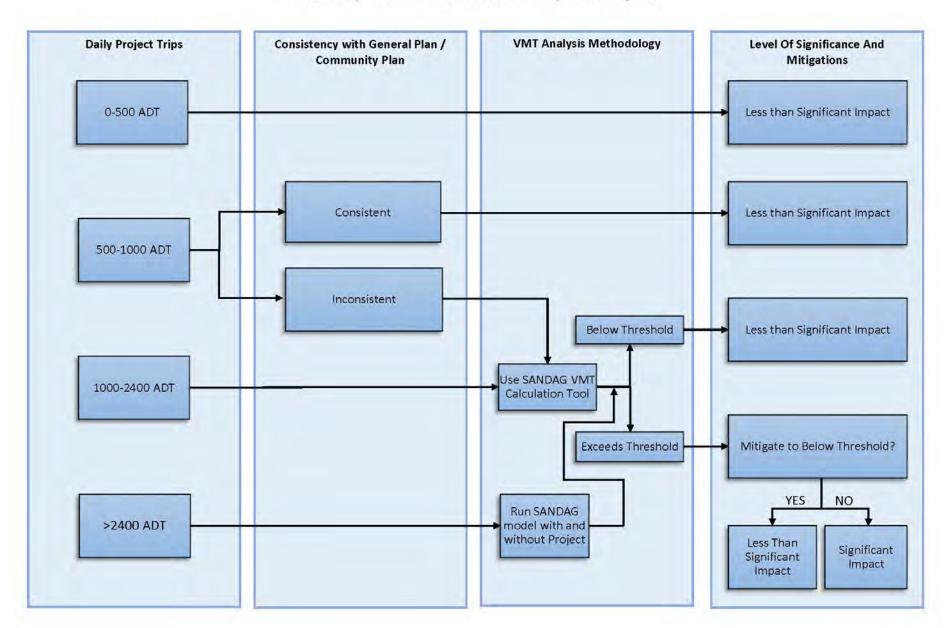
- Promote In-fill development near transit
- Reduce VMT to comply with other regulations (15% reduction is typical)
- Promote active transportation projects
- Promote transit use

VMT =  $\sum$  (Volume (vehicles/day) \* Segment Length (miles)




### SB 743 – Initial State Guidelines

- Less than significant impact
  - Developments near transit
  - Developments generating <100 daily trips</li>
- Residential and Office Development
  - Office 15% lower than the regional average
  - Residential 15% lower than the regional or city average
- Retail Development
  - Focus on VMT change (based upon modeling)
- Industrial / Other Development
  - No guidance given yet




### SB 743 Concept Map for SANDAG Region



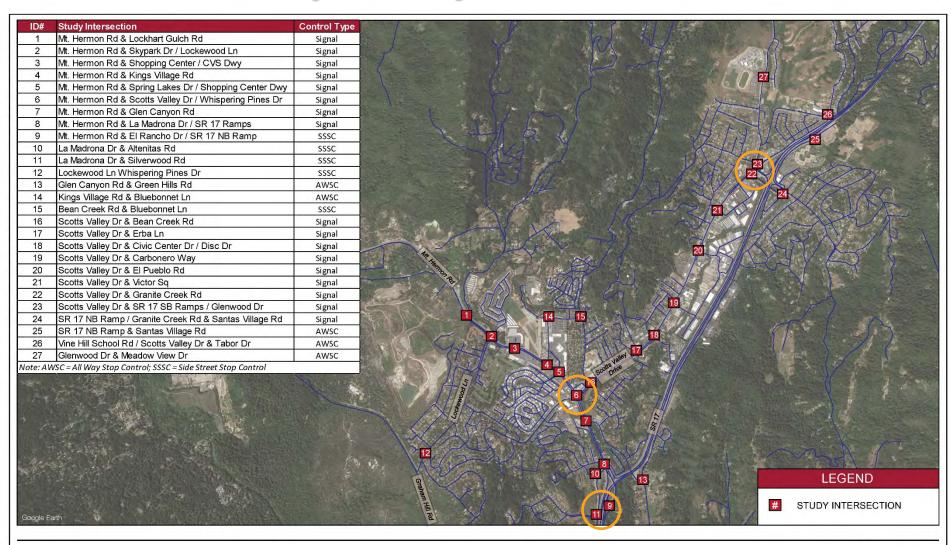

Leaflet | (c) OpenStreetMap contributors (c) CartoDB, CartoDB attribution

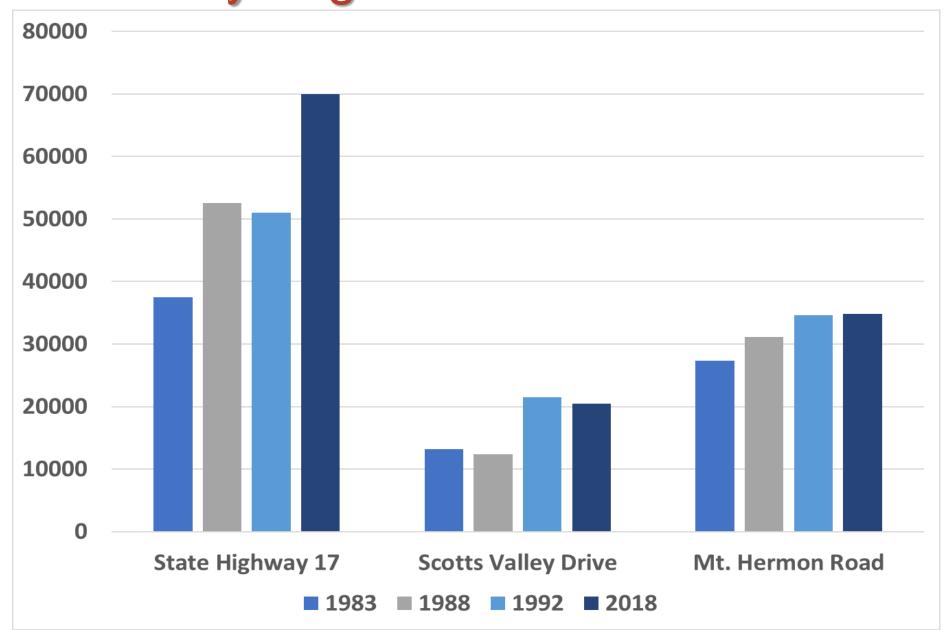
Figure 4-1 VMT Analysis for Individual Land Development Projects



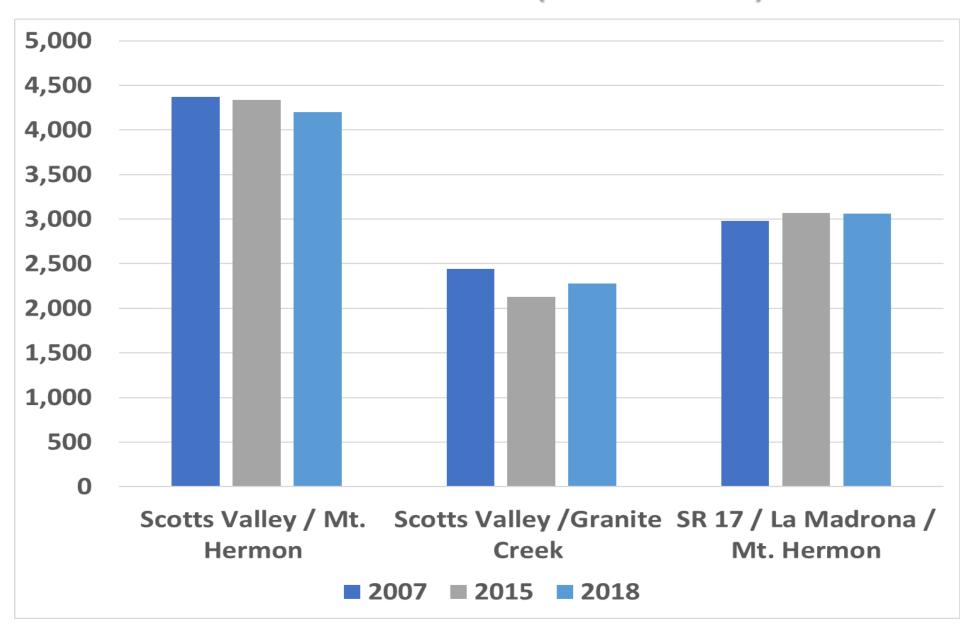


# Scotts Valley Study Intersections








General Plan Update
Figure 1

# Roadway Segment Volumes



# Intersection Volumes (PM Peak)



# Issues to Address in Mobility Element

- Regional coordination regarding VMT thresholds
- Policy direction regarding LOS
- Priority improvements:
  - Vehicular
  - Bicycle
  - Pedestrian
- Recommendations regarding Highway 17
- Land Use designations



